

Cell Signaling and Neuronal Death

Makoto R. Hara¹ and Solomon H. Snyder^{1,2,3}

¹The Solomon H. Snyder Department of Neuroscience,

²Department of Pharmacology and Molecular Science, and

³Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; email: ssnyder@jhmi.edu, mhara@jhmi.edu

Ann. Rev. Pharmacol. Toxicol. 2007. 47:117–41

First published online as a Review in Advance on July 31, 2006

The *Annual Review of Pharmacology and Toxicology* is online at <http://pharmtox.annualreviews.org>

This article's doi:
10.1146/annurev.pharmtox.47.120505.105311

Copyright © 2007 by Annual Reviews.
All rights reserved

0362-1642/07/0210-0117\$20.00

Key Words

glutamate, nitric oxide, calcium, S-nitrosylation, apoptosis

Abstract

The past few decades have revealed that cell death can be precisely programmed with two principal forms, apoptosis and necrosis. Besides pathophysiological alterations, physiologic processes, such as the pruning of neurons during normal development and the involution of the thymus, involve apoptosis. This review focuses on the role of inter- and intracellular signaling systems in cell death, especially in the nervous system. Among neurotransmitters, glutamate and nitric oxide have been most extensively characterized and contribute to cell death in excitotoxic damage, especially in stroke and possibly in neurodegenerative diseases. Within cells, calcium, the most prominent of all intracellular messengers, mediates diverse forms of cell death with actions modulated by many proteins, including IP₃ receptors, calcineurin, calpain, and cytochrome *c*.

INTRODUCTION

Bcl-2 family: a family of proteins that regulate a critical intracellular checkpoint in the intrinsic pathway of apoptosis. They are usually categorized into different groups based on the presence of certain sequence motifs, Bcl-2 homology (BH) domains

Modulation of cell death can impact many diseases; for example, as an oversimplification, drugs that augment cell death might treat cancer, whereas drugs that inhibit cell death may prevent neurotoxicity in stroke and neurodegenerative diseases. For most of the twentieth century, few paid heed to molecular mechanisms of cell death, assuming that the cellular machinery simply falls apart following toxic insults. The elucidation of a specific system of programmed cell death, apoptosis, has radically changed thinking (1). An elaborate series of apoptotic cascades has been illuminated, with particular focus on the caspase enzymes (2) as well as apoptotic factors, especially those of the Bcl-2 family (1). Besides its role in disease, apoptosis has physiologic roles, such as eliminating the excess neurons formed in embryonic development and causing physiologic involution of the thymus gland. In the adult, apoptosis plays a role in maintaining cells that turn over frequently, such as epithelial populations. Disrupting apoptosis in this case contributes to cancer. Apoptosis has often been viewed as a reflection of moderate levels of cell stress, which afford the luxury of a gradual, programmed death, in contrast to necrosis, which, following overwhelming insults, less specifically disrupts cells. However, recent evidence has shown that necrosis may also involve systematic alterations, such as overactivation of poly(ADP-ribose)polymerase (PARP) (3). Agents that facilitate or inhibit various molecular targets in apoptotic and necrotic pathways are in clinical development. Because of the very extensive literature available (1, 2, 4, 5), this review does not address general mechanisms of cell death.

Therapeutic approaches to neurotoxicity have developed only recently. It was previously thought impossible to reduce brain damage associated with vascular stroke. During stroke, neurons die of hypoxia following blood vessel occlusion or hemorrhage, an essentially irreversible process. In the case of neurodegenerative diseases, it had long been assumed that until one knew the exact molecular causes of Alzheimer's, Parkinson's, and Huntington's diseases and could develop an "antidote," therapeutic intervention was not feasible. In Alzheimer's disease, neurotoxicity is thought to be elicited primarily by the amyloid- β_{1-42} peptide, which can augment N-methyl-D-aspartate (NMDA) receptor transmission and intracellular Ca^{2+} (6).

A major change in thinking about clinical neurotoxicity came from the gradual appreciation that most of the neuronal death following a stroke occurs over a period of days following the initial insult and reflects excitotoxicity elicited by glutamate, the major excitatory transmitter in the brain (7, 8). Proof of principle came from studies in rodents showing that glutamate receptor antagonists reduce stroke damage whether administered before or after ligating a cerebral artery. For neurodegenerative diseases, regardless of the fundamental cause of toxicity, neuronal damage would likely increase the sensitivity of cells to excitatory neurotransmission so that agents that diminish such excitation could be therapeutic.

Many neurotransmitters likely participate in signaling events that influence neurotoxicity, but glutamate appears to be the principal actor. Nitric oxide (NO), formed in response to glutamate activation of NMDA receptors, has also been implicated in neurotoxicity. Among intracellular messengers, Ca^{2+} , whose concentration within the cell is augmented by NMDA receptor activation, has been most associated with

neuronal cell death. This review focuses on ways in which glutamate, NO, and Ca^{2+} contribute to neuronal cell death, with implications for potential therapeutic agents.

GLUTAMATE

Glutamate was first identified as a major excitatory neurotransmitter in the 1960s when a variety of agents that blocked glutamate actions were also shown to prevent physiologic synaptic excitation (9). However, identifying the pool of glutamate that is reserved for neurotransmission has, to this day, been a challenge. Glutamate is the most abundant amino acid in the brain, with ambient concentrations of approximately 10 mM. It participates in protein synthesis and interfaces closely with carbohydrate metabolism via transamination to alpha-ketoglutarate so that glucose is the physiologic precursor of most glutamate in the brain. Indeed, the turnover rate of glucose, about $1 \mu\text{mol g}^{-1} \text{ min}^{-1}$, resembles glutamate's turnover, implying that most of the brain's glucose metabolism is devoted to maintaining glutamate synthesis. Synaptic actions of glutamate are terminated by reuptake into nerve terminals and/or astrocytic glia that ensheath the synapse, with glial uptake being the predominant mechanism. Despite glutamate's ubiquity, immunohistochemical analysis reveals selective high densities of neuronal staining, presumably reflecting glutamatergic synapses.

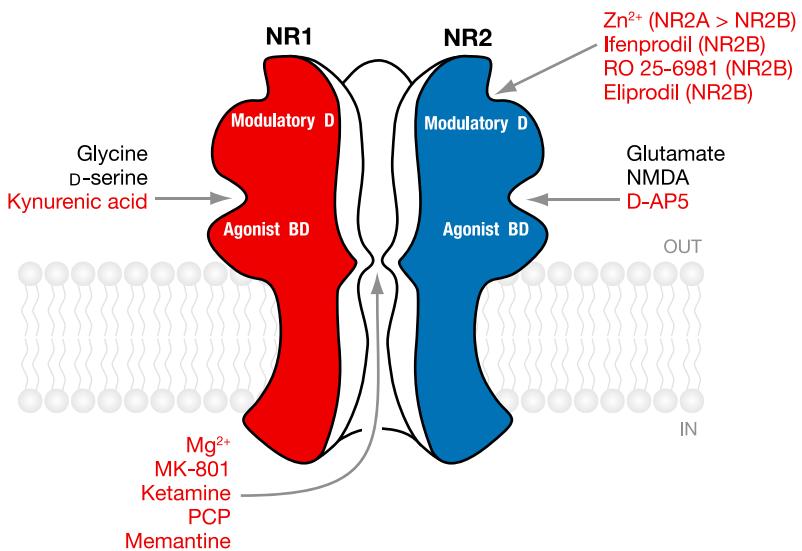
Because of their nonspecificity, glutamate synthesis and degradation have not been the targets of effective therapeutics, with the following exception (further discussed below): glutamate generated from the dipeptide *N*-acetyl-*L*-aspartyl-*L*-glutamate (NAAG) by glutamate carboxypeptidase II (GCPII). The bulk of possible drugs stimulates or blocks various subtypes of glutamate receptors, which include ionotropic and metabotropic types.

In contrast to the high millimolar total concentration of brain glutamate, peripheral extracellular glutamate levels are only approximately 0.6 μM . Because cerebrocortical neurons in cultures lacking glia are killed by 2–4 μM glutamate, the margin for error in glutamate transmission/cytotoxicity is relatively modest.

NMDA Receptors

Ionotropic glutamate receptors, which pass electric current in response to glutamate binding, come in two classes that were first distinguished by the differential actions of various glutamate analogs on receptor activation. One class, known as NMDA receptors, is activated by the glutamate analogue, NMDA. Although NMDA receptor channels can conduct Na^+ and Ca^{2+} , under basal conditions the channel is blocked by Mg^{2+} . The Mg^{2+} blockade is relieved by cellular depolarization, with implications for synaptic plasticity, especially long-term potentiation (LTP). Continuous strong stimulation optimally activates NMDA receptors and plays an important role in LTP. With neurotoxic insults, disruption of energy metabolism diminishes the driving force for the Na^+ pump that maintains the resting membrane potential of cells so that neurons become depolarized, relieving the Mg^{2+} block of NMDA receptors. Excess Ca^{2+} entry then leads to diverse events that elicit cell death.

N-acetyl-*L*-aspartyl-*L*-glutamate (NAAG):


NAAG is one of the most prevalent neurotransmitters in the mammalian brain. NAAG acts as an agonist at Group II metabotropic glutamate receptors on neurons and glia

Glutamate carboxypeptidase II

(GCPII): a metalloprotease that hydrolyses NAAG to *N*-acetyl-*L*-aspartate (NAA). It also occurs in the prostate as prostate-specific membrane antigen (PSMA) and is released into the circulation in prostate cancer

Ionotropic glutamate receptors:

receptors that are also ion channels and pass electric current in response to glutamate binding

Figure 1

NMDA receptor model showing binding sites for agonists and antagonists. The extracellular portions of NR1 and NR2 consist of two domains, the modulatory domain (Modulatory D) and the agonist binding domain (Agonist BD) (20). Zn²⁺ is an endogenous ligand for NR2A- and NR2B-modulatory D (NR2A>NR2B stands for nanomolar affinity for NR2A and micromolar affinity for NR2B) (149), and the synthetic neuroprotectant ifenprodil and its derivatives bind at the same domain in an NR2B-selective manner (150). The binding sites for noncompetitive antagonists Mg²⁺, MK-801, ketamine, PCP, and memantine are within the ion channel pore region. Antagonists are in red and agonists in black.

NMDA receptors contain a number of distinct binding sites of pharmacologic relevance (Figure 1). Besides the recognition site for glutamate, the receptors possess a binding site for glycine or D-serine, whose occupancy is required for NMDA receptor transmission. Glycine, as the first identified ligand for this site (10), was proposed as a fail-safe “second key” for the receptor to avoid accidental “overdose” stimulation by dietary and other sources of glutamate. However, glycine is also an abundant dietary amino acid. Recent studies indicate that the primary physiologic ligand for the “glycine” site of the receptor is the rare D-isomer of serine, D-serine (10a). Serine racemase mediates formation of D-serine from L-serine primarily in astrocytes that ensheathe NMDA receptor synapses, but it may also function in neurons (11). Selective degradation of D-serine greatly reduces NMDA receptor neurotransmission (12) and excitotoxicity (13). Drugs that block the glycine site, such as kynurenic acid derivatives, reduce NMDA receptor neurotransmission and stroke damage (14) (Figure 1).

A site within the NMDA receptor channel binds phencyclidine (PCP) and related noncompetitive antagonists, such as the animal anesthetic, ketamine, and the potential antistroke drug, MK-801. These drugs act most effectively when the receptor is activated, a phenomenon referred to as open channel voltage-dependent blockade.

Besides the Mg^{2+} binding locus, a site near the mouth of the channel binds Zn^{2+} to elicit a voltage-independent block (15, 16). A polyamine regulatory site activated by spermine and spermidine facilitates NMDA receptor transmission. These agents act in an allosteric fashion, augmenting NMDA receptor currents even with saturating concentrations of glycine, a phenomenon called glycine-independent stimulation (17). However, unlike D-serine/glycine, these agents are not required for NMDA receptor transmission.

NMDA receptors typically comprise four subunits. The glycine-binding NR1 subunit is present in all, whereas there are four subtypes of glutamate-binding NR2 subunits (NR2A–NR2D), and in some cases glycine-binding NR3 subunits (NR3A and NR3B) (reviewed in Reference 18). The NR2B subunits predominate in extrasynaptic areas, whereas NR2A tends to be confined to synapses. Excitotoxicity is thought to involve extrasynaptic receptors (19) such that selective NR2B antagonists, such as ifenprodil and eliprodil (SL 82075), are neuroprotective in animal models of stroke (20) (**Figure 1**).

The first compelling evidence of a role for glutamate in vascular stroke damage and the potential therapeutic value of antiglutamatergic agents came from the observation in the 1980s that MK-801, first developed as an antiepileptic drug, was a very potent and selective NMDA receptor antagonist (21) and could reduce stroke damage. MK-801 acts at the PCP site and elicits psychotomimetic effects, which interfere with therapy. Additionally, it has hypertensive actions. Ketamine, first developed as a general anesthetic and still used in veterinary medicine for anesthesia, also acts at this site. Accordingly, MK-801, like ketamine, is heavily sedating.

These limitations of MK-801 explain its lack of success in advanced clinical trials as well as the failure of numerous other noncompetitive antagonists acting at the PCP site. Lipton and associates (6, 22) have given evidence that uncompetitive channel blockade may be more clinically effective, leading to the therapeutic application of memantine. Whereas a noncompetitive antagonist such as MK-801 acts at an allosteric site, an uncompetitive antagonist may or may not act at such a site but, most importantly, its action is contingent on prior activation of the receptor by agonist. Memantine is a low-affinity, open channel blocker that appears to enter the channel selectively at times of pathophysiological activation but dissociates rapidly, preventing the drug from accumulating and blocking physiologic transmission. Memantine, a derivative of the antiinfluenza drug amantadine, possesses the three-ring adamantane structure. Whatever the exact pharmacology, memantine is clinically effective with a modest side effect profile that includes akathisia and dizziness. Memantine is approved for the treatment of mild/moderate Alzheimer's disease and is also effective in vascular dementia. In rodents, memantine reduces brain damage by approximately 50%, even when administered two hours after vascular occlusion, mimicking clinical settings (6).

AMPA Receptors

Besides NMDA receptors, a second class of ionotropic glutamate receptors was pharmacologically identified that respond selectively to the glutamate derivatives AMPA

(α -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate, and molecular cloning revealed distinct AMPA and kainate receptors (reviewed in Reference 18). AMPA receptors are tetramers comprised of combinations of four subunits, GluR1–4, and they mediate most physiologic glutamate transmission as well as synaptic plasticity (23). Scaffolding proteins such as GRIP (glutamate receptor interacting protein) maintain AMPA receptors at synaptic sites (24). TARP_s (transmembrane AMPA receptor regulatory proteins) regulate both AMPA receptor trafficking and channel opening (25).

Desensitization of AMPA receptors involves their internalization by replacement of GRIP with PICK1 following receptor phosphorylation by protein kinase C (26, 27), a mechanism required for expression of cerebellar long-term depression (LTD) (28). Internalized AMPA receptors are returned to the cell membrane by binding to *N*-ethylmaleimide sensitive factor (NSF) (29, 30) which provides a link to NMDA receptor transmission. NMDA receptor activation generates NO, which S-nitrosylates NSF (31), facilitating its binding to AMPA receptors and recycling to the plasma membrane (32). This feed-forward amplification of glutamatergic transmission seems well suited for a role in excitotoxicity, as activation of AMPA receptors is required to relieve the voltage-dependent Mg²⁺ blockade of NMDA receptors (33). The recycling of AMPA receptors affords several steps at which pharmacologic intervention might be possible. For instance, to diminish AMPA receptor transmission, one might develop drugs that block the binding of GRIP or of S-nitrosylated NSF to AMPA receptors.

Ca²⁺-impermeability of AMPA receptors is regulated by editing of the GluR2 subunit mRNA, leading to an amino acid change at a critical residue in the pore region. Thus, AMPA receptors that lack GluR2 or are comprised of an RNA-edited, defective GluR2 are Ca²⁺-permeable (34, 35) and cause excitotoxicity. Mice that have defective GluR2 show early onset epilepsy and premature death (36). Recent reports further reveal defective editing of the GluR2 mRNA in the spinal motor neurons of individuals affected by amyotrophic lateral sclerosis (ALS) (37). A selective channel blocker against GluR2-lacking AMPA receptors protects neurons against ischemia-induced death (38).

Metabotropic Glutamate Receptors

Metabotropic glutamate receptors (mGluR) are G-protein coupled and have been categorized into three groups based on their sequence homologies and G-protein coupling (39) (Table 1). Group I (mGluR1 and mGluR5) are coupled to the excitatory G_q protein. Both mGluR1 and mGluR5 are typically postsynaptic and act by stimulating phospholipase C (PLC) to generate inositol 1,4,5-trisphosphate (IP₃), with associated Ca²⁺ release. mGluR5 receptors are physically linked to NMDA receptors by a chain of anchoring proteins, including PSD-95 (postsynaptic density-95), Shank, and Homer (40). Therefore, the activation of NMDA receptors can potentiate mGluR5 receptor signaling by limiting phosphorylation-induced desensitization through the activation of Ca²⁺-dependent phosphatases (41). Reciprocally, activation of Group I receptors potentiates NMDA receptor transmission (42). Group II

Table 1 Classification of the metabotropic glutamate receptors (mGluRs)

Receptor family	Subtypes	Effects on signaling	Selective agonist/antagonist
Group I: Excitatory (G _q)	mGlu1	Activate AC (mGluR1) → ↑ cAMP	DHPG, 1S,3R-ACPD, quisqualate, LY393675
	mGlu5	Activate PLC → ↑ IP3 → ↑ [Ca ²⁺] Inhibits K ⁺ channels	DHPG, 1S,3R-ACPD, quisqualate, CHPG, MPEP, SIB-1757, SIB-1893
Group II: Inhibitory (G _i /G _o)	mGlu2	Inhibit AC → ↓ cAMP	NAAG, 2R,4R-APDC, 1S,3R-ACPD, LY354740, LY379268, LY341495
	mGlu3	Inhibit VGCC → ↓ [Ca ²⁺] Activates K ⁺ channels	NAAG, 2R,4R-APDC, 1S,3R-ACPD, LY354740, LY379268, LY341495
Group III: Inhibitory (G _i /G _o)	mGlu4	Inhibit AC → ↓ cAMP	L-SOP, ACPT-1, L-AP4, PHCCC, MSOP, MAP4, CPPG
	mGlu6	Inhibit VGCC → ↓ [Ca ²⁺]	L-SOP, L-AP4, MSOP, MAP4
	mGlu7		L-SOP, L-AP4, MSOP, MAP4
	mGlu8		L-SOP, L-AP4, 3,4-DCPG, MSOP, MAP4

Abbreviations: AC, adenylyl cyclase; [Ca²⁺], intracellular calcium; VGCC, voltage-gated calcium channels; DHPG, (S)-3,5-dihydroxyphenylglycine; ACPD, 1-aminocyclopentane-1,3-dicarboxylic acid; LY393675, 2-(S)-amino-2-(3-cis-carboxycyclobutyl)-3-(9H-thioxanthen-9-yl) propionic acid; CHPG, (RS)-2-chloro-5-hydroxyphenylglycine; MPEP, 2-methyl-6-(phenylethynyl)-pyridine; SIB-1757, 6-methyl-2-(phenylazo)-pyridinol; SIB-1893, (E)-2-methyl-6-(2-phenylethynyl)-pyridine; NAAG, N-acetyl-L-aspartyl-L-glutamate; APDC, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate; LY354740, (1S,2S,3R,6S)-(+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate; LY379268, (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate; LY341495, (2S)-2-amino-2-[(1S,2S)-2-carboxycyclopropyl-1-yl]-3(xanth-9-yl)propanoic acid; L-SOP, L-serine-O-phosphate; ACPT-1, (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid; L-AP4, L-2-amino-4-phosphono-butanoate; PHCCC, N-phenyl-7-(hydroxylimino)cyclopropan[b]chromen-1-a-carboxamide; MSOP, (RS)- α -methylserine-O-phosphate; MAP4, (S)-2-amino-2-methyl-4-phosphonobutanoic acid; CPPG, (RS)- α -cyclopropyl-4-phosphonophenylglycine; 3,4-DCPG, (S)-3,4-dicarboxyphenylglycine.

receptors (mGluR2 and mGluR3) are linked to the inhibitory G_i/G_o proteins. The mGluR2 receptors are located on terminals of glutamatergic neurons, whereas the mGluR3 receptors are principally glial. Group III receptors (mGluR4, mGluR6, mGluR7, and mGluR8), like the group II class, are coupled to G_i/G_o proteins. Both Group II and Group III receptors inhibit adenylyl cyclase.

The greatest body of research on drug development has involved Groups I and II, with a particular focus on Group I antagonists and Group II agonists. The Group I subtypes, mGluR1 and mGluR5, are reciprocally localized in the brain and are almost invariably postsynaptic. mGluR5 antagonists elicit increased survival of dopaminergic neurons and relieve Parkinsonian symptoms (43). Antagonists of mGluR1/5 receptors are also anxiolytic, presumably reflecting the blockade of glutamate excitation (39). mGluR2 receptors are most often found at extrasynaptic sites on nerve terminals and inhibit the release of glutamate (44, 45), whereas mGluR3 receptors are more ubiquitous. A substantial body of work has been done with the mGluR2/3 agonist LY354740, which inhibits glutamate release but also blocks release of other numerous neurotransmitters, including dopamine, norepinephrine, GABA, and several neuropeptides (45), thus leading to anxiolytic actions in numerous animal

models (39). mGluR2/3 agonists also protect dopaminergic neurons against toxicity (43).

Inositol

1,4,5-trisphosphate (IP₃):

a second messenger that is produced primarily by phospholipase C (PLC) metabolism of phosphatidylinositol-4,5-bisphosphate (PIP₂) in response to the stimulation of G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs)

Metabotropic glutamate receptors (mGluRs):

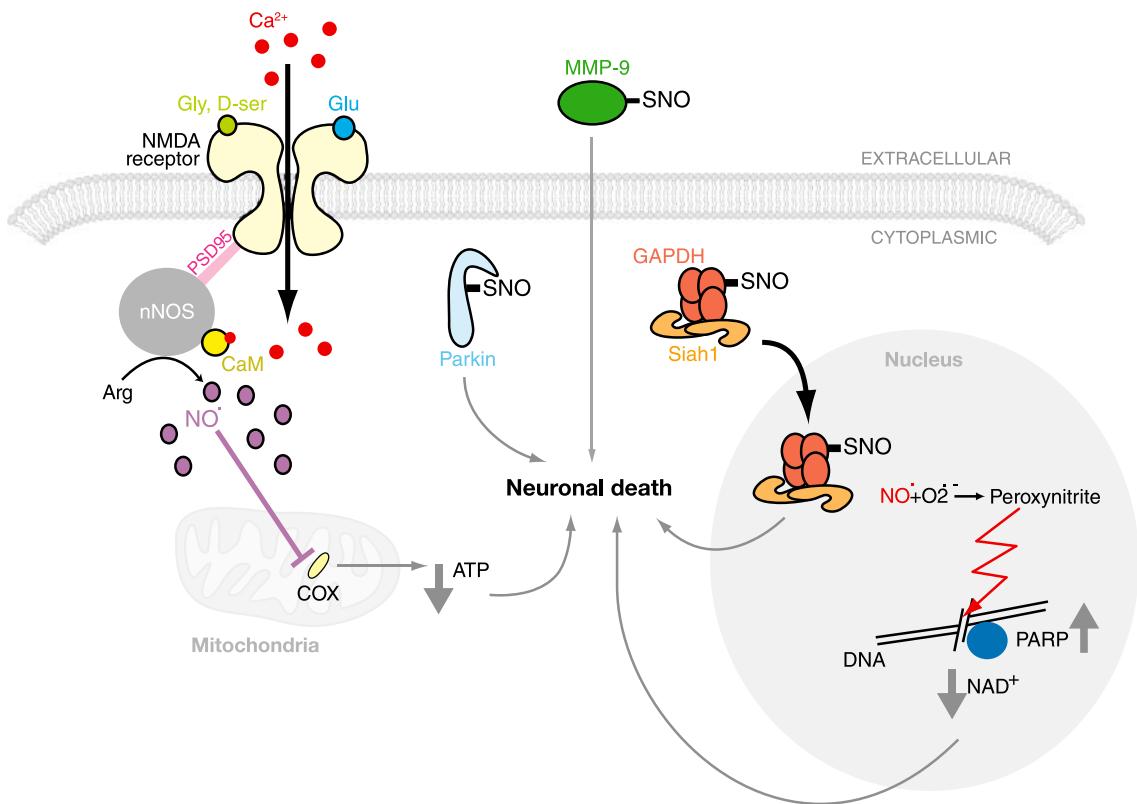
seven transmembrane receptors that are coupled to second-messenger cascades via G-proteins

NAAG

The millimolar concentrations of NAAG in the brain make it one of the most abundant neurotransmitter-related molecules (46). Although first identified in the mid 1960s, NAAG's role as a putative neurotransmitter has only recently been well characterized (47). It functions as an agonist at Group II mGluRs, especially mGluR3, to reduce cyclic AMP (cAMP) production (48) (Table 1). NAAG is converted to glutamate and *N*-acetyl-L-aspartate by the well-characterized GCPII and the more recently identified GCPIII (49, 50). These enzymes are Zn²⁺-activated metalloproteases localized to glia in the brain, but they are also abundant in parts of the gastrointestinal tract, kidney, and the human prostate (51). GCPII was independently discovered as prostate-specific membrane antigen (PSMA), whose concentrations are more selectively associated with metastatically active prostate cancer than the classic prostate-specific antigen (PSA) (52, 53).

The physiologic role of cerebral NAAG has been best elucidated by studies of GCPII inhibitors. In rats with middle cerebral artery occlusion, glutamate release into the extracellular space increases approximately 50-fold (54). Selective inhibitors of GCPII abolish this augmentation and markedly reduce stroke damage (55). However, these drugs do not affect the basal release of glutamate. Thus, basal release of glutamate does not involve NAAG stores, but during a stroke, almost all of the augmented release reflects the breakdown of NAAG by GCPII. Thus, GCPII inhibitors offer promise as antistroke therapy. GCPII inhibitors also relieve the neuropathic pain (56, 57), decrease in nerve conduction, and neuropathologic alterations associated with diabetic neuropathy (58). By contrast, drugs that are presently clinically employed in the treatment of neuropathic pain, such as gabapentin, relieve neuropathic pain but do not alter nerve conduction (59).

NITRIC OXIDE


NO is a noxious free radical gas, which, in the late 1980s, was discovered to exist physiologically in mammalian systems. Studies by Furchtgott and collaborators (60) have shown that relaxation of blood vessels elicited by acetylcholine and other agents requires generation by the endothelium of an unstable substance that diffuses to the smooth muscle layer, which was subsequently identified as NO (reviewed in Reference 61). At about the same time, NO was also shown to mediate the bactericidal and tumoricidal actions of macrophages (62, 63). Based on the fact that NO relaxes blood vessels by activating soluble guanylyl cyclase to generate cyclic GMP and that glutamate through NMDA-subtype receptors can also stimulate cyclic GMP formation, we (64) and others (65) showed that inhibitors of NO synthase (NOS) prevent NMDA-induced augmentation of cyclic GMP in brain slices. We also observed that NMDA elicits a tripling of NOS activity, monitored by the conversion of arginine to citrulline, which is formed stoichiometrically with NO (64). The ability of neuronal

depolarization to markedly augment NOS activity in a matter of seconds was at first perplexing but became clarified when we purified (66) and cloned (67) what is now designated as the neuronal form of the enzyme (nNOS). We found that nNOS binds calmodulin such that Ca^{2+} influx associated with depolarization activates the enzyme. There are three distinct forms of NOS reflecting three different genes: inducible NOS (iNOS), the macrophage form, which also exists in almost all tissues of the body; endothelial NOS (eNOS), which is predominantly in blood vessels; and nNOS. nNOS is localized in discrete neuronal populations in the brain and in numerous peripheral autonomic nerves. Evidence for NO neurotransmitter function is well established in the myenteric nervous system of the intestine, as nonadrenergic-noncholinergic (NANC) neurotransmission is markedly reduced by NOS inhibitors and in nNOS knockout ($\text{nNOS}^{-/-}$) mice (68–70). Penile nerves are enriched in nNOS, and NOS inhibitors prevent erection, establishing a neurotransmitter role for NO in penile erection (71). The therapeutic actions of phosphodiesterase-5 inhibitors in erectile dysfunction reflect their elevation of cyclic GMP levels, which are stimulated by the transmitting actions of NO.

Insight into physiologic functions of neuronal NO comes from studies of $\text{nNOS}^{-/-}$ mice (72). These mice have markedly dilated stomachs with hypertrophy of the pyloric sphincter, reflecting a physiologic role of NO in dilating the sphincter and providing a model of human infantile pyloric stenosis. Moreover, gastroparesis with dilated stomachs is a frequent complication of diabetes and resembles the phenotype of $\text{nNOS}^{-/-}$ mice (72). Diabetic mice display a loss of nNOS in their myenteric neurons, which can be reversed with insulin treatment and evidently reflects an insulin regulatory site in the promoter region of nNOS (73). Male $\text{nNOS}^{-/-}$ mice are hyperaggressive and display excessive sexual mounting activity on females, suggesting a role for neuronal NO in regulating aggressive and sexual behavior (74).

Penile erection is maintained in the $\text{nNOS}^{-/-}$ mice, which were developed by deletion of exon-2, and which still possess approximately 10%–15% residual NOS activity in the brain (72). The residual activity reflects alternatively spliced $\text{nNOS}\beta$, which is catalytically active and retained in the knockout rodents (75). Subsequent studies have established that $\text{nNOS}\beta$ suffices to maintain penile erection (76). Recent studies with total deletion of nNOS, including $\text{nNOS}\beta$, reveal hypogonadism and infertility (77).

A role for NO in neurotoxicity follows from the known activation of nNOS by NMDA receptor stimulation. In brain cultures, NMDA-induced neurotoxicity is markedly reduced by NOS inhibitors (78) and in $\text{nNOS}^{-/-}$ animal cultures (79). Stroke damage following middle cerebral artery occlusion is diminished by treatment with NOS inhibitors (80) and in $\text{nNOS}^{-/-}$ mice (81). NO can damage tissues by multiple mechanisms. The combination of NO with superoxide, which leaks from damaged mitochondria, leads to the formation of peroxynitrite, which degrades to the highly reactive hydroxyl free radical that can damage DNA, proteins, and lipids. Moncada and associates (82, 83) reported that NO impairs cytochrome *c* oxidase, disrupting the mitochondrial membrane potential and leading to energy depletion (**Figure 2**). In some studies, NO can be cytoprotective (84–86). These discrepancies may relate to different influences at high and low concentrations of NO as well as

Figure 2

Excess NO production mediates neuronal death. Activation of NMDA receptors results in the influx of Ca²⁺, which binds calmodulin (CaM) and activates nNOS, to convert L-arginine (Arg) to citrulline and NO. nNOS colocalizes with NMDA receptor via PSD-95. Although NO has many roles as a signaling molecule in neurons, generation of excess NO can be neurotoxic. NO inhibits cytochrome *c* oxidase (COX) in the mitochondria, which can cause ATP depletion (↓ATP) and neuronal death (82, 83). Neurotoxic actions of NO are also mediated by peroxynitrite, a reaction product from NO and superoxide anion (O₂^{·-}). Peroxynitrite causes severe damage to DNA, which results in overactivation of PARP (PARP↑), depletion of NAD⁺ (↓NAD⁺), and neuronal death (3). NO S-nitrosylates many proteins, including MMP-9, parkin, and GAPDH. S-nitrosylation (SNO) activates MMP-9 and induces neuronal apoptosis (89). S-nitrosylation of parkin inhibits its E3-ubiquitin-ligase activity and protective function (91, 92). S-nitrosylated GAPDH initiates neuronal apoptosis by nuclear translocation, following Siah1 binding (98).

the differential formation of NO free radical (NO[·]), the nitrosonium cation (NO⁺), nitrite (NO₂[·]), or nitrate (NO₃[·]) (85).

NO was first thought to act exclusively by stimulating cyclic GMP formation. Elegant studies by Stamler and associates (86, 87) provided evidence that NO might S-nitrosylate a variety of target proteins. Direct evidence that such S-nitrosylation occurs physiologically came with the development of the biotin-switch assay,

permitting a simple approach to detecting endogenously *S*-nitrosylated proteins (88). In the brain, numerous major proteins are physiologically *S*-nitrosylated, including tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the sodium pump ATPase, and NMDA receptors (88). Moreover, basal *S*-nitrosylation of these proteins is abolished in the brains of nNOS^{-/-} mice, establishing that physiologic neuronally derived NO mediates this modification.

There is evidence that neurotoxicity may involve excess *S*-nitrosylation. For instance, cerebral ischemia augments *S*-nitrosylation of matrix metalloprotease-9 (MMP-9), stimulating its activity and leading to the formation of stable sulfenic or sulfonic acid derivatives whose irreversible activation triggers neuronal apoptosis (89) (**Figure 2**). Parkin is an E3-ubiquitin-ligase whose mutation is associated with some forms of genetically determined Parkinson's disease (90). In Parkinson's disease, *S*-nitrosylation of parkin regulates its E3-ubiquitin-ligase activity and causes cytotoxicity (91, 92) (**Figure 2**). Other *S*-nitrosylated proteins that may promote cell death include I κ B kinase beta (IKK β) (93), nuclear factor κ B (NF- κ B) (94), and MDM2 (95). A link between *S*-nitrosylation of these proteins and neuronal cell death remains to be clarified.

Based on evidence linking GAPDH to cell death (96), a novel cell death cascade has been identified whereby diverse cell stressors in multiple tissues activate NO formation, which leads to nuclear events that mediate apoptosis (97, 98). Those stressors activate iNOS in a wide range of tissues, whereas NMDA receptor overactivation leads to NO accumulation in neurons. The generated NO *S*-nitrosylates GAPDH at its catalytic cysteine (C152 for human GAPDH), abolishing catalytic activity but conferring upon GAPDH the ability to bind to Siah1, an E3-ubiquitin-ligase. Siah1, which possesses a nuclear localization signal, escorts GAPDH to the nucleus. Within the nucleus, GAPDH stabilizes the rapidly turning over Siah1, enabling its E3-ubiquitin-ligase activity to degrade diverse nuclear proteins that lead to cell death (**Figure 2**).

The neurotoxicity seen in Huntington's disease may involve the NO-GAPDH-Siah1 cascade (99–101). The neurotoxicity of mutant Huntington, which accounts for cytotoxicity, requires nuclear translocation of its N-terminal fragment, which lacks a nuclear localization signal (102). Mutant Huntington occurs in a ternary complex with GAPDH and Siah1, which mediates its nuclear translocation and cytotoxicity (101). There may be pharmacotherapeutic consequences of the NO-GAPDH-Siah1 pathway. The monoamine oxidase-B inhibitor *R*-(–)-deprenyl (deprenyl) has been employed for many years in the therapy of Parkinson's disease, based on the notion that it elevates dopamine levels and therefore provides symptomatic benefits (103). However, clinical and animal studies indicate that deprenyl is neuroprotective and slows the progression of disease, presumably by retarding the loss of dopamine neurons (104). Deprenyl derivatives that lack monoamine oxidase inhibitory activity, such as TCH346 (CGP3466), are potent neuroprotective agents (105). As TCH346 acts at low nanomolar concentrations, Waldmeier and colleagues (106) covalently linked it to tissue extracts and found a single labeled protein, GAPDH. We observed that as little as 1 nM deprenyl or TCH346 block the *S*-nitrosylation of GAPDH, its binding to Siah1, and nuclear translocation (107). Thus, the neuroprotective actions of

***S*-nitrosylation:** the coupling of an NO moiety to a cysteine thiol (-SH) to form an *S*-nitrosothiol (-SNO)

these drugs evidently involve the NO-GAPDH-Siah1 system. Recent work reports a genetic association between the *GAPDH* locus on chromosome 12 and late-onset Alzheimer's disease (108). Agents that inhibit GAPDH-Siah1 interaction may provide a useful approach to cytoprotective therapy.

PARP, a well-characterized DNA repair enzyme, may also play a role in cell death associated with NO. Of the multiple forms of the enzyme, PARP1 is predominant and localized exclusively to the nucleus where it is activated by DNA strand breaks (3). PARP1 attaches long stretches of ADP-ribose to nuclear targets such as histones and PARP1 itself, utilizing NAD⁺ as the substrate, which triggers chromatin-structure relaxation and increases the access of DNA-repair enzymes to the break. However, overactivation of PARP by excess DNA damage depletes NAD⁺ and hence ATP, leading to cell death from energy loss (Figure 2). Presumably, with massive DNA damage, it is safer to destroy cells rather than to attempt DNA repair, which may be faulty and lead to mutational damage. Neurotoxicity in brain cultures is markedly diminished by treatment with PARP inhibitors (109), and stroke damage following middle cerebral artery occlusion is reduced up to 80% in PARP1^{-/-} mice (110). In rodents, PARP inhibitors substantially reduce stroke damage (111).

Iron can be extremely cytotoxic, and it accumulates in the brains of patients with Parkinson's disease as well as Alzheimer's disease (112). Recent studies implicate glutamate-NMDA receptor-NO transmission in iron uptake (113). NO is delivered to most, if not all, of its targets by the binding of NOS to such targets either directly or through scaffolding proteins such as CAPON, which binds nNOS selectively (114). CAPON in turn binds to Dextras1, a member of the Ras family of small G-proteins, so named based on its augmented expression following stimulation by the glucocorticoid-analogue dexamethasone (115). NO S-nitrosylates and activates Dextras1, serving as guanine nucleotide exchange factor (GEF) (115). Physiologic activation of Dextras1 requires its interaction with nNOS, as Dextras1 activation declines in nNOS^{-/-} mice. Dextras1 physiologically binds to PAP7 (peripheral benzodiazepine-associated protein-7), a scaffolding protein, which in turn, binds to DMT1 (divalent metal ion transporter-1), the principal iron import protein in cells (113). NMDA receptor activation thus activates nNOS, which S-nitrosylates and activates Dextras1, which then simulates iron entry via DMT1. These findings raise the possibility that iron influx provides a signaling response to glutamate neurotransmission analogous to Ca²⁺ entry. The system may also participate in NMDA receptor neurotoxicity.

CALCIUM

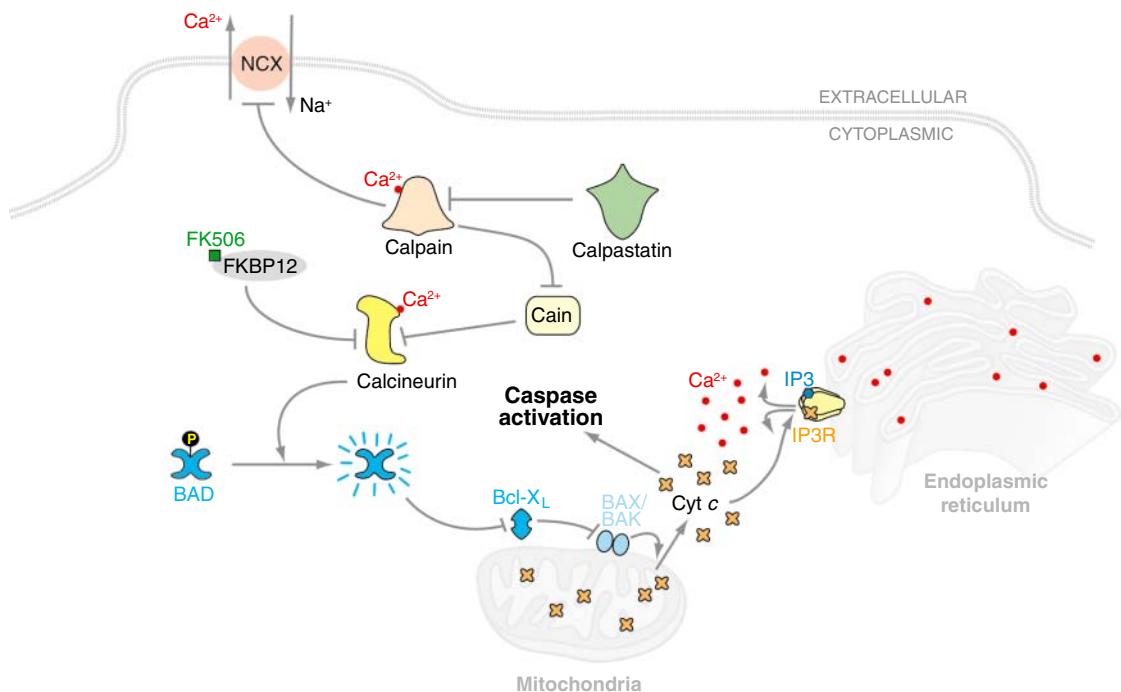
Ca²⁺ is likely the most prominent intracellular messenger molecule. Its multiple cellular roles are much too extensive to describe here in full, so we review only selected functions that mediate cell death. Ca²⁺ enters cells by at least three separate types of channels: voltage-sensitive Ca²⁺ channels, store-operated channels, and receptor-operated channels such as the NMDA receptor. Within the cell, Ca²⁺ is sequestered in mitochondria, in the endoplasmic reticulum (ER), or via one of numerous Ca²⁺-binding proteins. The SR (sarcoplasmic reticulum in muscle) provides the largest stores of intracellular Ca²⁺. Ca²⁺ is retained within the ER by the sarco(endo)plasmic

reticulum Ca^{2+} -ATPase (SERCA) pump. It is released from ER stores in response to neurotransmitter/hormone receptor activation of PLC, generating IP3, which acts upon its receptors (IP3R) in ER. Release of intracellular Ca^{2+} via IP3R is typically followed by Ca^{2+} entry into cells via a channel that had been thought to be related to the store-operated Ca^{2+} channel but appears to be distinct and involves one or more of a family of TRP (transient receptor potential) Ca^{2+} channels (116). Although depletion of Ca^{2+} stores by IP3R release of Ca^{2+} can activate Ca^{2+} entry, IP3R regulation of entry is largely independent of its ability to release Ca^{2+} (117). Moreover, PLC- γ itself is critical for agonist-induced Ca^{2+} entry independent of its lipase activity (118). Ca^{2+} -induced Ca^{2+} release involves discrete ryanodine receptors (119).

Free cytosolic Ca^{2+} concentrations are maintained at approximately 100 nM, orders of magnitude less than extracellular levels, by the SERCA pump as well as by extrusion through the plasma-membrane Ca^{2+} -ATPase. Mitochondria accumulate Ca^{2+} via a uniporter and release it by reversal of the uniporter, a Na^+ - H^+ dependent exchanger, or via a mitochondrial permeability transition pore (mPTP). Although the mPTP may have an important physiologic function in regulating intracellular Ca^{2+} dynamics, it has been studied most extensively as a channel that participates in cell death via release of Ca^{2+} and other substances (120).

ER Ca^{2+} disposition may play a direct role in apoptosis. Besides regulating Ca^{2+} signaling, the ER participates in the modification and movement of newly synthesized proteins. Pathologic increases or decreases in ER Ca^{2+} markedly alter protein folding and lead to cell death following ER stress (121). Abnormal protein folding can be counteracted by the unfolding protein response pathway, but following ER stress this pathway may elicit apoptosis (122). BI-1 (Bax inhibitor-1) is localized to ER and suppresses ER stress-induced apoptosis (123). Bap31 (Bcl-2-associated protein-31), an ER membrane protein, is cleaved by caspase-8, and the generated fragment leads to apoptosis associated with ER Ca^{2+} release (124).

Mitochondria have long been known to accumulate Ca^{2+} via a relatively low affinity uniporter (125). Mitochondria operate in conjunction with ER in this process as revealed by the studies of Pozzan and collaborators (126), who established an intimate physical interaction between ER and mitochondrial membrane with ER Ca^{2+} directly entering mitochondria at selected sites. We elucidated a novel signaling system whereby ER and mitochondria interact in causing apoptosis via IP3R-cytochrome *c* interactions (127) (Figure 3). IP3R is an extremely large protein, approximately 2800 amino acids, with the IP3 binding site occupying only a few hundred amino acids at the N terminus and the Ca^{2+} channel only a few hundred amino acids at the C terminus. The large intervening area is presumed to provide sites for the binding of the large number of substances that can regulate IP3R function (128). Yeast two-hybrid analysis revealed selective binding of cytochrome *c* to IP3R (127). Release of Ca^{2+} by IP3R is well known to be regulated by endogenous Ca^{2+} . Low concentrations of Ca^{2+} augment release, whereas concentrations above the physiologic 100 nM concentrations inhibit release in a feedback that presumably prevents excessive Ca^{2+} release by IP3. As little as 1 nM cytochrome *c* markedly and selectively inhibits this feedback system leading to uncontrolled, excessive Ca^{2+} release. The Ca^{2+} enters the adjacent mitochondria, triggering cytochrome *c* release, which binds to IP3Rs



Inositol

1,4,5-trisphosphate

receptor (IP3R): receptors that release Ca^{2+} into the cytosol from internal stores in response to IP3

Figure 3

Excess Ca^{2+} release in neurons causes neurotoxicity. Calpain, a Ca^{2+} -dependent protease, cleaves NCX (Na^{+} - Ca^{2+} exchanger) during ischemia, resulting in increased $[\text{Ca}^{2+}]$ which causes neuronal death. Overexpression of calpastatin, an inhibitor of calpain, reverses the effect (144). FK506 binds to FKBP12, a complex that inhibits calcineurin, a Ca^{2+} -dependent phosphatase (135). Cain, an inhibitor of calcineurin (147), is cleaved by calpain (148). Calcineurin dephosphorylates Bad which heterodimerizes with Bcl-X_L and causes Ca^{2+} -induced apoptosis (138). Cytochrome *c* (cyt *c*) released from mitochondria (5) activates caspases and mediates apoptosis (130). IP3R, bound with cyt *c* and IP3, is resistant against Ca^{2+} -dependent inhibition of Ca^{2+} release which leads to uncontrolled Ca^{2+} release (127).

on the ER, further augmenting Ca^{2+} release. This feed-forward cycle is transmitted throughout the cell causing synchronized Ca^{2+} release and apoptotic cell death. Evidence consistent with this model includes the finding that apoptotically released cytochrome *c* binds to IP3Rs on the ER, whereas cytochrome *c* in cells lacking IP3R passes into the supernatant fraction rather than associating with the ER membrane containing fraction. A dominant-negative peptide that selectively blocks the binding of IP3R and cytochrome *c* prevents cell death suggesting that drugs with this activity might be therapeutic agents (129).

Besides releasing ER Ca^{2+} , cytochrome *c* activates the caspase cascade, which has been extensively reviewed (2, 130). Permeabilization of the outer mitochondrial membrane to permit cytochrome *c* release involves the opening of pores via several mechanisms, including the actions of the proapoptotic Bcl-2 family of proteins, most notably Bax and Bak (131) (Figure 3). Cytochrome *c* may also exit via a rupture of the

outer mitochondrial membrane initiated by mPTP, which comprises the mitochondrial benzodiazepine receptor, the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), and the mitochondrial cyclophilin D (120). As these proteins include components of both the outer and inner mitochondrial membrane, mPTP occurs at sites of fusion between these membranes. mPTP is triggered by a variety of factors, including Ca^{2+} and reactive oxygen species (132). Studies with cyclophilin D knockout mice implicate mPTP in necrosis but not apoptosis (133, 134). These mice display marked resistance to cardiac ischemia/reperfusion injury but are susceptible to apoptosis.

Calcium-Dependent Enzymes

Calcineurin is a Ca^{2+} -dependent phosphatase that mediates the immunosuppressant actions of cyclosporin A and FK506. These drugs bind to their respective receptor proteins, cyclophilin and FK506-binding protein (FKBP12), with the drug-receptor complex binding to and inactivating calcineurin (135) (Figure 3). The immunosuppressant cyclosporin A blocks Ca^{2+} -dependent apoptosis in some cells, implicating calcineurin in this process (136). However, cyclosporin A also blocks cyclophilin D, a key component of mPTP involved in neuronal cell death (137). Calcineurin also dephosphorylates phospho-Bad, a proapoptotic member of the Bcl-2 family. Dephosphorylation of Bad by calcineurin causes it to translocate from the cytosol to mitochondria, enhancing heterodimerization with Bcl-X_L to promote neuronal apoptosis (138) (Figure 3). Overexpression of calcineurin in apoptosis-resistant cells dephosphorylates Bad and restores the apoptotic phenotype (139, 140).

Calpains are a family of several Ca^{2+} -stimulated proteases whose inhibition blocks cell death (141). Calpain activity is regulated by calpastatin, an endogenous inhibitor (142, 143) (Figure 3). Because calpain can cleave multiple proteins, including caspases themselves (122), it is difficult to determine which of its actions participates in apoptosis. A recent study has shown that calpain cleaves the plasma membrane $\text{Na}^+ - \text{Ca}^{2+}$ exchanger (NCX) during brain ischemia, and overexpression of calpastatin rescues neurons from excitotoxic death (144) (Figure 3). Calpain also cleaves antiapoptotic proteins such as Bcl-2 and Bcl-X_L, and the cleaved products promote cell death (145). Regardless of the exact target of calpain, its importance is evident by the substantial antiapoptotic actions of calpain inhibitors, with several under clinical investigation as cytoprotectants (146).

An interesting intersection of calpain and calcineurin in cell death is evident in calpain's cleavage of cabin/cain, an endogenous calcineurin inhibitor (147, 148) (Figure 3). This cleavage activates calcineurin and leads to Ca^{2+} -mediated cell death (148).

CONCLUSIONS

The literature on molecular mechanisms of cell death is vast so that this review performance is delimited. We focused on intercellular and intracellular signaling systems that are physiologic mediators of the actions of neurotransmitters in the nervous

system. When activated in excess, they participate in cell death mechanisms, and agents that block these systems are neuroprotective. By contrast, other cascades such as those involving caspases and members of the Bcl-2 family have been predominantly characterized as “killers.” Conceivably, such systems also participate in physiologic intracellular signaling. If so, then drugs influencing caspases and members of the Bcl-2 family might be therapeutic in diverse conditions unrelated to cell death.

SUMMARY POINTS

1. Glutamate, a major excitatory neurotransmitter in the brain, causes excitotoxicity when released in excess.
2. Overactivation of NMDA receptors by glutamate causes excess Ca^{2+} entry, which leads to diverse events that elicit cell death. Thus, pharmacologic blockade of NMDA receptors via memantine, for example, has therapeutic benefits.
3. Activation of AMPA receptors relieves the voltage-dependent Mg^{2+} blockade of NMDA receptors, implicating links to excitotoxicity. AMPA receptors, which lack GluR2 or are comprised of an RNA-edited, defective GluR2, are Ca^{2+} -permeable and cause excitotoxicity.
4. Group I mGluR antagonists and Group II mGluR agonists are anxiolytic, presumably reflecting the blockade of glutamate excitation.
5. Selective inhibitors of GCPII, which convert NAAG to glutamate and *N*-acetyl-L-aspartate, reduce stroke damage.
6. Glutamate binds to NMDA receptors leading to Ca^{2+} influx and activation of nNOS. NO can cause neurotoxicity via inhibition of cytochrome *c* oxidase in mitochondria, overactivation of PARP, or *S*-nitrosylation of proteins, including MMP-9, parkin, and GAPDH, all of which lead to neuronal death.
7. Calcium, the most prominent of all intracellular messengers, mediates diverse forms of cell death, with actions modulated by many proteins, including IP3 receptors, calcineurin, calpain, and cytochrome *c*.

ACKNOWLEDGMENTS

We apologize to colleagues whose original work we could not cite owing to limitations of space. We thank Thomas W. Sedlak, Matthew B. Cascio, Jaime H. Cheah, and Michael D. Kornberg for critical readings of the manuscript. This work was supported by U.S. Public Health Service Grants DA-00266, MH-18501, MH-68830, and Research Scientific Award DA-00074 (to S.H.S.).

LITERATURE CITED

1. Danial NN, Korsmeyer SJ. 2004. Cell death: critical control points. *Cell* 116:205–19

2. Riedl SJ, Shi Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. *Nat. Rev. Mol. Cell Biol.* 5:897–907
3. Jagtap P, Szabo C. 2005. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. *Nat. Rev. Drug Discov.* 4:421–40
4. Reed JC, Doctor KS, Godzik A. 2004. The domains of apoptosis: a genomics perspective. *Sci. STKE* 2004: re9
5. Green DR. 2005. Apoptotic pathways: ten minutes to dead. *Cell* 121:671–74
6. Lipton SA. 2006. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. *Nat. Rev. Drug Discov.* 5:160–70
7. **Lucas DR, Newhouse JP. 1957. The toxic effect of sodium L-glutamate on the inner layers of the retina. *AMA Arch. Ophthalmol.* 58:193–201**
8. Olney JW, Ho OL, Rhee V, DeGubareff T. 1973. Letter: neurotoxic effects of glutamate. *N. Engl. J. Med.* 289:1374–75
9. Curtis DR, Watkins JC. 1961. Analogues of glutamic and gamma-amino-n-butyric acids having potent actions on mammalian neurones. *Nature* 191:1010–11
10. Johnson JW, Ascher P. 1987. Glycine potentiates the NMDA response in cultured mouse brain neurons. *Nature* 325:529–31
- 10a. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, et al. 2006. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. *Cell* 125:775–84
11. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H. 2006. Neuron-derived D-serine: novel means to activate N-methyl-D-aspartate receptors. *J. Biol. Chem.* 281(20):14151–62
12. Mothet JP, Parent AT, Wolosker H, Brady ROJ, Linden DJ, et al. 2000. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. *Proc. Natl. Acad. Sci. USA* 97:4926–31
13. Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A. 2004. Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. *J. Pharmacol. Exp. Ther.* 311:836–44
14. Nemeth H, Toldi J, Vecsei L. 2005. Role of kynurenines in the central and peripheral nervous systems. *Curr. Neurovasc. Res.* 2:249–60
15. Peters S, Koh J, Choi DW. 1987. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. *Science* 236:589–93
16. Westbrook GL, Mayer ML. 1987. Micromolar concentrations of Zn²⁺ antagonize NMDA and GABA responses of hippocampal neurons. *Nature* 328:640–43
17. Williams K, Zappia AM, Pritchett DB, Shen YM, Molinoff PB. 1994. Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. *Mol. Pharmacol.* 45:803–9
18. Madden DR. 2002. The structure and function of glutamate receptor ion channels. *Nat. Rev. Neurosci.* 3:91–101
19. Hardingham GE, Fukunaga Y, Bading H. 2002. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. *Nat. Neurosci.* 5:405–14

7. The first report that showed glutamate could be toxic to neurons.

21. The discovery that MK801, an anticonvulsant, acts by blocking NMDA receptors.

22. Analysis of differential channel effects of memantine and other NMDA receptor antagonists.

20. Kemp JA, McKernan RM. 2002. NMDA receptor pathways as drug targets. *Nat. Neurosci.* 5(Suppl.): 1039–42
21. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL. 1986. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. *Proc. Natl. Acad. Sci. USA* 83:7104–8
22. Chen HS, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, et al. 1992. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. *J. Neurosci.* 12:4427–36
23. Collingridge GL, Isaac JT, Wang YT. 2004. Receptor trafficking and synaptic plasticity. *Nat. Rev. Neurosci.* 5:952–62
24. Dong H, O'Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL. 1997. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. *Nature* 386:279–84
25. Nicoll RA, Tomita S, Bredt DS. 2006. Auxiliary subunits assist AMPA-type glutamate receptors. *Science* 311:1253–56
26. Matsuda S, Mikawa S, Hirai H. 1999. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. *J. Neurochem.* 73:1765–68
27. Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL. 2000. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. *J. Neurosci.* 20:7258–67
28. Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, et al. 2006. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. *Neuron* 49:845–60
29. Noel J, Ralph GS, Pickard L, Williams J, Molnar E, et al. 1999. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. *Neuron* 23:365–76
30. Luscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, et al. 1999. Role of AMPA receptor cycling in synaptic transmission and plasticity. *Neuron* 24:649–58
31. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, et al. 2003. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. *Cell* 115:139–50
32. Huang Y, Man HY, Sekine-Aizawa Y, Han Y, Juluri K, et al. 2005. S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. *Neuron* 46:533–40
33. Herron CE, Lester RA, Coan EJ, Collingridge GL. 1986. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. *Nature* 322:265–68
34. Hollmann M, Hartley M, Heinemann S. 1991. Ca²⁺ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. *Science* 252:851–53
35. Sommer B, Kohler M, Sprengel R, Seuberg PH. 1991. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. *Cell* 67:11–19

36. Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, et al. 1995. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. *Science* 270:1677-80
37. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S. 2004. Glutamate receptors: RNA editing and death of motor neurons. *Nature* 427:801
38. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. 2005. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. *Proc. Natl. Acad. Sci. USA* 102:12230-35
39. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. 2005. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. *Nat. Rev. Drug Discov.* 4:131-44
40. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, et al. 1999. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. *Neuron* 23:583-92
41. Alagarsamy S, Marino MJ, Rouse ST, Gereau RW, Heinemann SF, Conn PJ. 1999. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. *Nat. Neurosci.* 2:234-40
42. Fitzjohn SM, Irving AJ, Palmer MJ, Harvey J, Lodge D, Collingridge GL. 1996. Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. *Neurosci. Lett.* 203:211-13
43. Conn PJ, Battaglia G, Marino MJ, Nicoletti F. 2005. Metabotropic glutamate receptors in the basal ganglia motor circuit. *Nat. Rev. Neurosci.* 6:787-98
44. Anwyl R. 1999. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. *Brain Res. Brain. Res. Rev.* 29:83-120
45. Cartmell J, Schoepp DD. 2000. Regulation of neurotransmitter release by metabotropic glutamate receptors. *J. Neurochem.* 75:889-907
46. Coyle JT. 1997. The nagging question of the function of N-acetylaspartylglutamate. *Neurobiol. Dis.* 4:231-38
47. Zhou J, Neale JH, Pomper MG, Kozikowski AP. 2005. NAAG peptidase inhibitors and their potential for diagnosis and therapy. *Nat. Rev. Drug Discov.* 4:1015-26
48. Wroblewska B, Wroblewski JT, Saab OH, Neale JH. 1993. N-acetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. *J. Neurochem.* 61:943-48
49. Luthi-Carter R, Berger UV, Barczak AK, Enna M, Coyle JT. 1998. Isolation and expression of a rat brain cDNA encoding glutamate carboxypeptidase II. *Proc. Natl. Acad. Sci. USA* 95:3215-20
50. Bzdega T, Crowe SL, Ramadan ER, Sciarretta KH, Olszewski RT, et al. 2004. The cloning and characterization of a second brain enzyme with NAAG peptidase activity. *J. Neurochem.* 89:627-35
51. Speno HS, Luthi-Carter R, Macias WL, Valentine SL, Joshi AR, Coyle JT. 1999. Site-directed mutagenesis of predicted active site residues in glutamate carboxypeptidase II. *Mol. Pharmacol.* 55:179-85

55. Demonstration that GCPII inhibition blocks stroke damage and prevents glutamate release, establishing NAAG as the source of neurotoxic glutamate and suggesting new antistroke therapies.

52. Carter RE, Feldman AR, Coyle JT. 1996. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. *Proc. Natl. Acad. Sci. USA* 93:749-53
53. Tiffany CW, Lapidus RG, Merion A, Calvin DC, Slusher BS. 1999. Characterization of the enzymatic activity of PSM: comparison with brain NAALADase. *Prostate* 39:28-35
54. Matsumoto K, Lo EH, Pierce AR, Halpern EF, Newcomb R. 1996. Secondary elevation of extracellular neurotransmitter amino acids in the reperfusion phase following focal cerebral ischemia. *J. Cereb. Blood Flow Metab.* 16:114-24
55. Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, et al. 1999. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. *Nat. Med.* 5:1396-402
56. Carpenter KJ, Sen S, Matthews EA, Flatters SL, Wozniak KM, et al. 2003. Effects of GCP-II inhibition on responses of dorsal horn neurones after inflammation and neuropathy: an electrophysiological study in the rat. *Neuropeptides* 37:298-306
57. Chen SR, Wozniak KM, Slusher BS, Pan HL. 2002. Effect of 2-(phosphonomethyl)-pentanedioic acid on allodynia and afferent ectopic discharges in a rat model of neuropathic pain. *J. Pharmacol. Exp. Ther.* 300:662-67
58. Zhang W, Slusher B, Murakawa Y, Wozniak KM, Tsukamoto T, et al. 2002. GCP-II (NAALADase) inhibition prevents long-term diabetic neuropathy in type 1 diabetic BB/Wor rats. *J. Neurol. Sci.* 194:21-28
59. Pan HL, Eisenach JC, Chen SR. 1999. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. *J. Pharmacol. Exp. Ther.* 288:1026-30
60. Furchtgott RF, Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. *Nature* 288:373-76
61. Moncada S, Higgs EA. 2006. The discovery of nitric oxide and its role in vascular biology. *Br. J. Pharmacol.* 147(Suppl. 1):S193-201
62. Hibbs BJJ, Taintor RR, Vavrin Z. 1987. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. *Science* 235:473-76
63. Stuehr DJ, Nathan CF. 1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. *J. Exp. Med.* 169:1543-55
64. Bredt DS, Snyder SH. 1989. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. *Proc. Natl. Acad. Sci. USA* 86:9030-33
65. Garthwaite J, Garthwaite G, Palmer RM, Moncada S. 1989. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. *Eur. J. Pharmacol.* 172:413-16
66. Bredt DS, Snyder SH. 1990. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. *Proc. Natl. Acad. Sci. USA* 87:682-85
67. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. 1991. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. *Nature* 351:714-18

67. Cloning of neuronal NO synthase facilitates NO research and drug development.

68. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. 1990. Nitric oxide as an inhibitory nonadrenergic noncholinergic neurotransmitter. *Nature* 345:346-47
69. Desai KM, Sessa WC, Vane JR. 1991. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. *Nature* 351:477-79
70. Zakhary R, Poss KD, Jaffrey SR, Ferris CD, Tonegawa S, Snyder SH. 1997. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. *Proc. Natl. Acad. Sci. USA* 94:14848-53
71. Burnett AL, Lowenstein CJ, Bredt DS, Chang TS, Snyder SH. 1992. Nitric oxide: a physiologic mediator of penile erection. *Science* 257:401-3
72. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. 1993. Targeted disruption of the neuronal nitric oxide synthase gene. *Cell* 75:1273-86
73. Watkins CC, Sawa A, Jaffrey S, Blackshaw S, Barrow RK, et al. 2000. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. *J. Clin. Invest.* 106:373-84
74. Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, et al. 1995. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. *Nature* 378:383-86
75. Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH. 1997. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. *Proc. Natl. Acad. Sci. USA* 94:3396-401
76. Hurt KJ, Sezen SF, Champion HC, Crone JK, Palese MA, et al. 2006. Alternatively spliced neuronal nitric oxide synthase mediates penile erection. *Proc. Natl. Acad. Sci. USA* 103(9):3440-43
77. Gyurko R, Leupen S, Huang PL. 2002. Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. *Endocrinology* 143:2767-74
78. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. *Proc. Natl. Acad. Sci. USA* 88:6368-71
79. Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM. 1996. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. *J. Neurosci.* 16:2479-87
80. Yoshida T, Limmroth V, Irikura K, Moskowitz MA. 1994. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. *J. Cereb. Blood Flow Metab.* 14:924-29
81. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. *Science* 265:1883-85
82. Moncada S, Erusalimsky JD. 2002. Does nitric oxide modulate mitochondrial energy generation and apoptosis? *Nat. Rev. Mol. Cell Biol.* 3:214-20
83. Almeida A, Moncada S, Bolanos JP. 2004. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. *Nat. Cell Biol.* 6:45-51
84. Vallance P, Leiper J. 2002. Blocking NO synthesis: how, where and why? *Nat. Rev. Drug Discov.* 1:939-50

87. An early study proposing S-nitrosylation as a mechanism of NO action.

85. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, et al. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. *Nature* 364:626–32
86. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. 2005. Protein S-nitrosylation: purview and parameters. *Nat. Rev. Mol. Cell Biol.* 6:150–66
87. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, et al. 1992. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. *Proc. Natl. Acad. Sci. USA* 89:444–48
88. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. 2001. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. *Nat. Cell Biol.* 3:193–97
89. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, et al. 2002. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. *Science* 297:1186–90
90. Moore DJ, West AB, Dawson VL, Dawson TM. 2005. Molecular pathophysiology of Parkinson's disease. *Annu. Rev. Neurosci.* 28:57–87
91. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, et al. 2004. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. *Science* 304:1328–31
92. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, et al. 2004. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. *Proc. Natl. Acad. Sci. USA* 101:10810–14
93. Reynaert NL, Ckless K, Wouters EF, van der Vliet A, Janssen-Heininger YM. 2005. Nitric oxide and redox signaling in allergic airway inflammation. *Antioxid. Redox. Signal.* 7:129–43
94. Matthews JR, Botting CH, Panico M, Morris HR, Hay RT. 1996. Inhibition of NF-κappaB DNA binding by nitric oxide. *Nucleic Acids Res.* 24:2236–42
95. Schonhoff CM, Daou MC, Jones SN, Schiffer CA, Ross AH. 2002. Nitric oxide-mediated inhibition of Hdm2-p53 binding. *Biochemistry* 41:13570–74
96. Ishitani R, Chuang DM. 1996. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. *Proc. Natl. Acad. Sci. USA* 93:9937–41
97. Sawa A, Khan AA, Hester LD, Snyder SH. 1997. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. *Proc. Natl. Acad. Sci. USA* 94:11669–74
98. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, et al. 2005. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. *Nat. Cell Biol.* 7:665–74
99. Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, et al. 1996. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. *Nat. Med.* 2:347–50
100. Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, et al. 1996. Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. *Hum. Mol. Genet.* 5:1311–18

101. Bae BI, Hara MR, Cascio MB, Wellington CL, Hayden MR, et al. 2006. Mutant Huntington: nuclear translocation and cytotoxicity mediated by GAPDH. *Proc. Natl. Acad. Sci. USA* 103(9):3405–9
102. Hackam AS, Singaraja R, Zhang T, Gan L, Hayden MR. 1999. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. *Hum. Mol. Genet.* 8:25–33
103. Kofman OS. 1993. Protective effect or symptomatic effect of deprenyl? *N. Engl. J. Med.* 328:1715
104. Youdim MB, Bakhle YS. 2006. Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness. *Br. J. Pharmacol.* 147(Suppl. 1):S287–96
105. Carlile GW, Chalmers-Redman RM, Tatton NA, Pong A, Borden KE, Tatton WG. 2000. Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. *Mol. Pharmacol.* 57:2–12
106. Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, et al. 1998. Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the anti-apoptotic compounds CGP 3466 and R-(–)-deprenyl. *J. Biol. Chem.* 273:5821–28
107. Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, et al. 2006. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. *Proc. Natl. Acad. Sci. USA* 103(10):3887–89
108. Li Y, Nowotny P, Holmans P, Smemo S, Kauwe JS, et al. 2004. Association of late-onset Alzheimer's disease with genetic variation in multiple members of the GAPD gene family. *Proc. Natl. Acad. Sci. USA* 101:15688–93
109. Zhang J, Dawson VL, Dawson TM, Snyder SH. 1994. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. *Science* 263:687–89
110. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, et al. 1997. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. *Nat. Med.* 3:1089–95
111. Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, et al. 2001. Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. *Int. J. Mol. Med.* 7:255–60
112. Sadrzadeh SM, Saffari Y. 2004. Iron and brain disorders. *Am. J. Clin. Pathol.* 121(Suppl.): S64–70
113. Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE III, et al. 2006. Glutamate-NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dextras1. *Neuron* 51:431–40
114. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH. 1998. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. *Neuron* 20:115–24
115. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. 2000. Dextras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. *Neuron* 28:183–93
116. Montell C. 2005. The TRP superfamily of cation channels. *Sci. STKE* 2005: re3

127. A cell death pathway linking IP₃ mediated Ca²⁺ release from ER and mitochondria release of cytochrome *c*.

117. van Rossum DB, Patterson RL, Kiselyov K, Boehning D, Barrow RK, et al. 2004. Agonist-induced Ca²⁺ entry determined by inositol 1,4,5-trisphosphate recognition. *Proc. Natl. Acad. Sci. USA* 101:2323–27
118. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, et al. 2005. Phospholipase C γ 1 controls surface expression of TRPC3 through an intermolecular PH domain. *Nature* 434:99–104
119. Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signaling: dynamics, homeostasis and remodelling. *Nat. Rev. Mol. Cell Biol.* 4:517–29
120. Newmeyer DD, Ferguson-Miller S. 2003. Mitochondria: releasing power for life and unleashing the machineries of death. *Cell* 112:481–90
121. Xu C, Bailly-Maitre B, Reed JC. 2005. Endoplasmic reticulum stress: cell life and death decisions. *J. Clin. Invest.* 115:2656–64
122. Orrenius S, Zhivotovsky B, Nicotera P. 2003. Regulation of cell death: the calcium-apoptosis link. *Nat. Rev. Mol. Cell Biol.* 4:552–65
123. Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, et al. 2006. Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. *Proc. Natl. Acad. Sci. USA* 103(8):2809–14
124. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. 2003. Regulation of apoptosis by endoplasmic reticulum pathways. *Oncogene* 22:8608–18
125. Crompton M, Heid I. 1978. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. *Eur. J. Biochem.* 91:599–608
126. Rizzuto R, Pozzan T. 2006. Microdomains of intracellular Ca²⁺: molecular determinants and functional consequences. *Physiol. Rev.* 86:369–408
127. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. 2003. Cytochrome *c* binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. *Nat. Cell Biol.* 5:1051–61
128. Patterson RL, Boehning D, Snyder SH. 2004. Inositol 1,4,5-trisphosphate receptors as signal integrators. *Annu. Rev. Biochem.* 73:437–65
129. Boehning D, van Rossum DB, Patterson RL, Snyder SH. 2005. A peptide inhibitor of cytochrome *c*/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. *Proc. Natl. Acad. Sci. USA* 102:1466–71
130. Jiang X, Wang X. 2004. Cytochrome *c*-mediated apoptosis. *Annu. Rev. Biochem.* 73:87–106
131. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, et al. 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. *Science* 292:727–30
132. Halestrap A. 2005. Biochemistry: a pore way to die. *Nature* 434:578–79
133. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, et al. 2005. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. *Nature* 434:652–58
134. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, et al. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. *Nature* 434:658–62

135. Liu J, Farmer JDJ, Lane WS, Friedman J, Weissman I, Schreiber SL. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. *Cell* 66:807–15

136. Shi YF, Sahai BM, Green DR. 1989. Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. *Nature* 339:625–26

137. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, et al. 2005. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. *Proc. Natl. Acad. Sci. USA* 102:12005–10

138. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, et al. 1999. Ca²⁺-induced apoptosis through calcineurin dephosphorylation of BAD. *Science* 284:339–43

139. Jayaraman T, Marks AR. 1997. T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. *Mol. Cell Biol.* 17:3005–12

140. Jayaraman T, Marks AR. 2000. Calcineurin is downstream of the inositol 1,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. *J. Biol. Chem.* 275:6417–20

141. Carragher NO. 2006. Calpain inhibition: a therapeutic strategy targeting multiple disease states. *Curr. Pharm. Des.* 12:615–38

142. Porn-Ares MI, Samali A, Orrenius S. 1998. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. *Cell Death Differ.* 5:1028–33

143. Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, et al. 1998. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. *Arch. Biochem. Biophys.* 356:187–96

144. Bano D, Young KW, Guerin CJ, Lefevre R, Rothwell NJ, et al. 2005. Cleavage of the plasma membrane Na⁺/Ca²⁺ exchanger in excitotoxicity. *Cell* 120:275–85

145. Vandenabeele P, Orrenius S, Zhivotovsky B. 2005. Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. *Cell Death Differ.* 12:1219–24

146. Zatz M, Starling A. 2005. Calpains and disease. *N. Engl. J. Med.* 352:2413–23

147. Lai MM, Burnett PE, Wolosker H, Blackshaw S, Snyder SH. 1998. Cain, a novel physiologic protein inhibitor of calcineurin. *J. Biol. Chem.* 273:18325–31

148. Kim MJ, Jo DG, Hong GS, Kim BJ, Lai M, et al. 2002. Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death. *Proc. Natl. Acad. Sci. USA* 99:9870–75

149. Rachline J, Perin-Dureau F, Le Goff A, Neyton J, Paoletti P. 2005. The micro-molar zinc-binding domain on the NMDA receptor subunit NR2B. *J. Neurosci.* 25:308–17

150. Perin-Dureau F, Rachline J, Neyton J, Paoletti P. 2002. Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. *J. Neurosci.* 22:5955–65

138. A linkage of the Bcl-2 family protein BAD and calcineurin in regulation of apoptosis.

Contents

Annual Review of
Pharmacology and
Toxicology

Volume 47, 2007

Allosteric Modulation of G Protein-Coupled Receptors

Lauren T. May, Katie Leach, Patrick M. Sexton, and Arthur Christopoulos 1

Pharmacogenomic and Structural Analysis of Constitutive G Protein-Coupled Receptor Activity

Martine J. Smit, Henry F. Vischer, Remko A. Bakker, Aldo Jongejan, Henk Timmerman, Leonardo Pardo, and Rob Leurs 53

Cell Survival Responses to Environmental Stresses Via the Keap1-Nrf2-ARE Pathway

Thomas W. Kensler, Nobunao Wakabayashi, and Shyam Biswal 89

Cell Signaling and Neuronal Death

Makoto R. Hara and Solomon H. Snyder 117

Mitochondrial Oxidative Stress: Implications for Cell Death

Sten Orrenius, Vladimir Gogvadze, and Boris Zhivotovsky 143

AMP-Activated Protein Kinase as a Drug Target

D. Grahame Hardie 185

Intracellular Targets of Matrix Metalloproteinase-2 in Cardiac Disease:

Rationale and Therapeutic Approaches

Richard Schulz 211

Arsenic: Signal Transduction, Transcription Factor, and

Biotransformation Involved in Cellular Response and Toxicity

Yoshito Kumagai and Daigo Sumi 243

Aldo-Keto Reductases and Bioactivation/Detoxication

Yi Jin and Trevor M. Penning 263

Carbonyl Reductases: The Complex Relationships of Mammalian Carbonyl- and Quinone-Reducing Enzymes and Their Role in Physiology

Udo Oppermann 293

Drug Targeting to the Brain

A.G. de Boer and P.J. Gaillard 323

Mechanism-Based Pharmacokinetic-Pharmacodynamic Modeling:

Biophase Distribution, Receptor Theory, and Dynamical Systems Analysis

Meindert Danhof, Joost de Jongh, Elizabeth C.M. De Lange, Oscar Della Pasqua,

Bart A. Ploeger, and Rob A. Voskuyl 357

The Functional Impact of SLC6 Transporter Genetic Variation <i>Maureen K. Hahn and Randy D. Blakely</i>	401
mTOR Pathway as a Target in Tissue Hypertrophy <i>Chung-Han Lee, Ken Inoki, and Kun-Liang Guan</i>	443
Diseases Caused by Defects in the Visual Cycle: Retinoids as Potential Therapeutic Agents <i>Gabriel H. Travis, Marcin Golczak, Alexander R. Moise, and Krzysztof Palczewski</i> ...	469
Idiosyncratic Drug Reactions: Current Understanding <i>Jack Uetrecht</i>	513
Non-Nicotinic Therapies for Smoking Cessation <i>Eric C.K. Siu and Rachel F. Tyndale</i>	541
The Obesity Epidemic: Current and Future Pharmacological Treatments <i>Karl G. Hofbauer, Janet R. Nicholson, and Olivier Boss</i>	565
Circadian Rhythms: Mechanisms and Therapeutic Implications <i>Francis Levi and Ueli Schibler</i>	593
Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations <i>Michael P. Murphy and Robin A.J. Smith</i>	629
Acute Effects of Estrogen on Neuronal Physiology <i>Catherine S. Woolley</i>	657
New Insights into the Mechanism of Action of Amphetamines <i>Annette E. Fleckenstein, Trent J. Volz, Evan L. Riddle, James W. Gibb, and Glen R. Hanson</i>	681
Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System <i>John A. Dani and Daniel Bertrand</i>	699
Contrasting Actions of Endothelin ET _A and ET _B Receptors in Cardiovascular Disease <i>Markus P. Schneider, Erika I. Boesen, and David M. Pollock</i>	731

Indexes

Cumulative Index of Contributing Authors, Volumes 43–47	761
Cumulative Index of Chapter Titles, Volumes 43–47	764

Errata

An online log of corrections to *Annual Review of Pharmacology and Toxicology* chapters (if any, 1997 to the present) may be found at
<http://pharmtox.annualreviews.org/errata.shtml>